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A Frequency Response Function-Based Damage Identification 
Method for Cylindrical Shell Structures 

Usik Lee*, Wonhee Jeong, Jooyong Cho 
Department o f  Mechanical Engineering, Inha University, 

253 Yonghyun-Dong, Nam-Ku,  Incheon 402-751, Korea 

In this paper, a structural damage identification method (SDIM) is developed for cylindrical 

shells and the numerically simulated damage identification tests are conducted to study the 

feasibilit3~ of the proposed SDIM. The SDIM is derived from the frequency response function 

solved from the structural dynamic equations of damaged cylindrical shells. A damage distri- 

bution function is used to represent the distribution and magnitudes of the local damages within 

a cylindrical shell. In contrast with most existing modal parameters-based SDIMs which require 

the modal parameters measured in both intact and damaged states, the present SDIM requires 

only the FRF-data  measured in the damaged state. By virtue of utilizing FRF-data,  one is able 

to make the inverse problem of damage identification well-posed by choosing as many sets of 

excitation frequency and FRF measurement point as needed to obtain a sufficient number of 

equations. 
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1. I n t r o d u c t i o n  

The cylindrical shell is an important structural 

element that is not only applied for the civil and 

aerospace structures, but also for the mechanical, 

nuclear, chemical, and industrial structures. The 

oil or gas tanks, airplane fuselages, compressor 

shells, and boilers are the typical examples of 

application. Because such cylindrical shell struc- 

tures should be free from structural failure due 

to structural damage, it is very important to un- 

derstand the effects of structural damage on the 

structural behavior to detect the structural dam- 

age in the very early stage of damage progression. 

The dynamic characteristics of damaged cylin- 
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drical shells have been studied by some researc- 

hers including Roytman and Titova (2002). 

Because the structural damages may change the 

vibration characteristics of a structure, the dam- 

age-induced changes in dynamic characteristics 

in turn can be used to detect and identify the 

structural damages. In most existing vibration- 

based structural damage identification methods 

(SDIMs), the modal parameters such as natural 

frequencies, modal damping and mode shapes 

and the frequency response function (FRF)-da ta  

have been widely used (Adams et al., 1978 ; Pan- 

dey et al., 1991 ; Banks et al. 1996 ; Choudhury 

and He, 1996; Wang et al., 1997; Bicanic and 

Chen, 1997 ; Thyagarajan et al., 1998 ; Hassiotis, 

2000; Cho et al., 2002; Lee and Shin, 2002). 

The SDIMs for cylindrical shells have been 

introduced by some reseachers (Srinivasan and 

Kot, 1998; Royston et al., 2000; Ip and Tse, 

2002). Srinivasan and Kot (1998) proposed to 

use the damage index method. The method is 

based on the changes in the modal strain energy 

of structures associated with damage and utilizes 
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the mode shape information. Royston et al. (2000) 

used the damage-induced sli t-mode phenomena 

for detecting damages with in a nominally axisy- 

mmetric structure. Ip and Tse (2002) located the 

axial position of damage by using the sensitivities 

of natural frequencies to damage. 

As discussed by many researchers (Bank et al., 

1996; Choudhury and He, 1996; Wang et al., 

1997 ; Thyagarajsn et al., 1998 ; Cho et al., 2002 ; 

Lee and Shin, 2002), there are apparent advan- 

tages of F R F - d a t a  over the modal parameters 

because (1) only a very limited number of modal 

parameters can be obtained by vibration tests be- 

cause a large number of sensors can not be always 

applied for complete measurement, (2) the modal 

parameters can be contaminated by the modal 

extraction errors because they are extracted from 

the F R F  data, and (3) the F R F - d a t a  can provide 

much more damage information in a desired fre- 

quency range than the modal parameters can do. 

In practice, it is easier to measure the F R F - d a t a  

than to measure the modal data from a damaged 

structure that is in service. Thus, it seems to be 

very promising to use the measured F R F - d a t a  to 

detect and identify the damages generated within 

a structure. 

Thus, the purposes of this paper are (1) to 

propose an F R F - d a t a  based SDIM for cylindri- 

cal shells and (2) to conduct the numerical feasi- 

bility tests for the proposed method. The method 

is derived from the frequency response function 

solved from governing differential equations of 

motion. In contrast with most existing modal 

parameters-based SDIMs, in which the modal 

parameters measured in both intact and damaged 

states are used, the present SDIM utilizes only the 

F R F - d a t a  measured in the damaged state. 

2. Dynamics of Damaged 
Cylindrical Shells 

2.1 Dynamic equations of motion 
Consider an elastic, isotropic, thin intact cy- 

lindrical shell. The shell has the radius R, the 

length L, and the thickness h as shown in Fig. 1. 

The x-axis  is directed along the symmetry axis 

of the median shell surface, the y-axis  in the 

Fig. I Geometry of a cylindrical shell 

circ'~mferential direction, and the z-direction 

along the interior normal of the meridian surface. 

Define the displacements in the longitudinal, cir- 

cumferential and radial directions by u (x, 8, t ) ,  

V (x, 8, t) and w (x, 8, t ) ,  respectively, and also 

define the external loads in each direction by 

Px(X, 0, t), py(x, O, t) and Pz(x, O, t), respec- 
tively. 

The Donnell-Mushitari 's  thin shell theory 

gives the dynamic equations of motion for the 

cylindrical shell as (Markus, 1988 ; Soedel, 1993) 

[L]{u(x,  0, t ) } + { f ( x ,  0, t)} 
=ph{~(x ,  0, t)} (1) 

where {u(x,  8, t)} and { f ( x ,  8, t)} are the 

displacements field vector and the external loads 

vector, respectively, defined by 

{u(x, 0, t)}={u(x, ~, t) v(x, 0, t) w(x, 0, t)} ~ 
(2) 

{f(x, 0, t)}={px(x, ~, t) Py(x, 0, t) p~(x, 8, t)} T 

and [L] is the matrix of differential operators 

for intact cylindrical shells defined by 

where 

[Ln L12 L13] 
eLl:K/L21 L22 L23 [ 

LL31 L32 L33 d 

8 •  ( 1 - ~ )  8 ~ 
L , I =  -~ 2R 2 802 

L12= L21= - -  

(l +~) 8 2 
2R 8):80 

(3) 

8 
L l a = - L 3 1 -  R ax (4) 
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( 1 -- u) 0 2 1 ~92 
L22 = 1- 2 OX z R 2 302 

[L]{u(x, O, t )}+(f(x ,  O, t)} 
=ph{~(x, 0, t)} 

(7) 

1 0 .  
L2a= -L32  = R 2 c30 

L33 = -- 4 e 2 

In above equations, the dot (" 1 indicates the deri- 

vative with respect to the time t and ph is the 

mass density per unit area, u is the Poisson 

ratio, and K is the membrane rigidity of shell 

defined by (Soedel, 1993) 

K -  Eh (5) 
1 - -  lJ 2 

In most practical cases, it is impossible to assign 

definitive representations of the sfiffnesses at local 

damage sites because the locations, dimensions, 

and geometries of local damages are not known 

in prior. Thus, one of the simplest approaches is 

to represent the damage-induced change in stiff- 

ness by the degradation of elastic modulus as 

follows (Banks et al., 1996) 

Ea(x, O)=E[1-d (x ,  0)] (6) 

where E is Young's modulus in the intact state 

and Ea is the effective Young's modulus in the 

damaged state, and d (x, 0) is the damage distri- 

bution function by which the distribution and 

states of local damages (i.e., damage locations, 

sizes, and severities) can be characterized. For 

instance, d(x, O)=0 indicates the intact state, 

while d (x, 0) = 1 indicates the complete ruptures 

of material at (x, 0) due to damage. In general, 

the damage-induced decrease in the mass density 

is neglected because the damage will not result in 
complete breakage with the loss of mass (Nicanic 

and Chen, 1997; Hassiotis, 2000). 

Assume that the local damages within a cy- 

lindrical shell are uniform through the thickness, 

(i.e., thickness - through damages). The dynamic 
equations of motion for damaged cylindrical 

shells can be obtained from the Donnell-Mushi-  

tari's thin shell theory by replacing the intact 
Young's modulus E with the effective Young's 

modulus Ea as follows: 

where [ £ ]  = [L] + [LD] is the matrix of differen- 

tim operators for damaged cylindrical shells and 

[LD] is defined by 

where 

Lon Lm2 Lm3] 
= - K  L 2, Lo 3, (8) 

LD3, LD32 LD33j / 

0 / " 0 \ 2 (1 - -~ )  0 (do' i f )  Lml= Ox ~ a Ox )5- Rz O0 

v O O 2 ( l - u )  3 d 3 

1 0d  0 

1 /  Od , 4 0 )  

l / d O \  

Looo-- hX[ °~ r . /  32 . u 32 \ /  

V 
~2 

R 2 R 2 0xO0 

For  the intact case, d(x, O)=0 and the matrix 

of differential operators [LD] vanishes to bring 

Eq. (7) back to Eq. (1). 

2.2 Forced vibration responses  
Assume that only the external load pz(x, O, t) 

which is normal to shell surface is harmonically 
applied at a specified point (xF,  Or) as follows : 

p~(x, O, t)=Fo3(X--XF)3(O--OF)e ~°~ (10) 
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where Fo is the amplitude of the harmonic 
point force and co is the excitation circular fre- 
quency. The forced vibration response of a 
damaged cylindrical shell can be assumed in the 
form 

{~,}= 
{ u(x, O, t) }=t~=t{ Ui(x, O) }q,(t) (11) 

where { U1}={UI V~ Wiff are the normal mo- 
des of the intact cylindrical shell and qt are 
the modal coordinates. The normal modes { U1 } = 
satisfy the eigenvalue problem of the intact cy- 
lindrical shell 

[L]{ Uz}=-phf2~{ UI} (no sum on I) (12) 

and the orthogonality property 

f oh{ U,}T{ Uj)dxdO=&j (13) 

fa{ u1}r [g ]{  Uj}dxdO 
(14) 

=--  f2~at+(no sum on I) 

where f2 z are the natural frequencies of the intact 
shell and 3jj is the Kronecker symbol. 

Substituting Eq. (11) into Eq, (7) and ap- 
plying Eqs. (12-14) yields a set of  coupled modal 
equations 

~i~- f2~qz--j~=/lzjql=fz(t) (no sum on I) (15) where 

where f /  are the modal forces given by 

p L  [ '27[  

f~(t) =J0  Jo Pz(x, O, t) W~dxdO (16) 
= I/Vz(xF, OF) Foe ~°t 

and /ltj is the symmetric matrix defined by 

M= f { u, }r[Lo]{ Us }dxdO (17) 

The matrix /llj is the damage influence matrix 
(DIM). Equation (15) implies that, if DIM is not 
a diagonal matrix, the damage may induce the 
coupling between modal coordinates. The natural 

frequencies of  a damaged shell can be obtained with 
from 

det[(Q z -  ~-~)3/i- / ln-J=o (no sum on I) (18) 

where ~-1 are the natural frequencies of damaged 
shell, where 

For a cylindrical shell simply-supported at 
both ends, the normal modes { Ur } are given by 
(Soedel, 1993) 

mi Wmni 

Amni Cos ( m~X ) cos ( nO) 

B~,,, sin ( m~x ) s in(n0)  

C,,i  sin (-m-~- ) cos ( nO) 

(19) 

where i=1 ,  2, 3. Equation (19) implies that 
there are three natural frequencies for every m, 
n combination. The lowest is associated with the 
mode where the transverse component domina- 
tes, while the other two are usually higher by an 
order of magnitude and are associated with the 
mode where the displacements in the tangent 
plane dominate. Because U1 and V~ can be ex- 
pressed in terms of  WI, Eq. (19) can be rewritten 
a s  

/ - ' , z ~ ,  z , ~  WI (20) 

p . =  L Am~ p2~= 1 Bm~ (21) 
;1"t2,7"( Cmni' Tl C'rani 

As used in above equations, the contracted sub- 
scripts will be consistently used for the mode 
numbers in the following for brevity, i.e., I for 
toni and J for rsj. 

By substituting Eq. (20) into Eq. (17) and by 
integrating by parts, one may obtain. 

Alj= f d(x,  O)~,(x ,  O) dxdO (22) 

o ~ w, o ~ wj (23) 
q~zj (x, 0) = Qm We Wj + Q2. 3x30 OxOO 
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p,p, ~ mx 2 rr 2 E I 2 

+ V ]~ V m~'z2 

1~ ~2 ~ DT2 

+ l (p2'na + PvsZ + + P~lP~jlnasa + R ( L z(Pl~m%B~r2 ) 

(24) 

Ozu=(l_u) { pupv ~R2 + ( pxzp2a + p2zpxs) ~_~. ~ P2zP~]2 

+ (P.,:Pa, +2~,+2Pat +2) ha I .  l 
12 RzJ 

Equation (22) shows that DIM depends on the 
distribution pattern of  damage over the shell. 
Once the damage distribution function d (x ,  0) 
is given, DIM can be readily computed from Eq. 
(22). 

Assume there are N local damages of constant 
magnitudes 0 ~ D k < l  ( k = l ,  2, ..., N) .  They are 
centered at (Xdk, Oak) and uniformly distributed 
over a small finite segment of  area 2£~ ×2R0-k, 
as shown in Fig. 2. The damage distribution func- 
tion can be then written as 

N 
d (x, O) = E Dk [ H  (Xak--Yk) - H (xah + £k) ] 

k=l (25) 
× I n  (O-a~- 0-k) - H (6ah + 6k) ] 

where H ( y - a )  is the Heaviside's unit function 
defined by 

1 when y > a 
H ( y - a ) =  0 w h e n y < a  

Substituting Eq. (24) into Eq. (22) yields 

(26) 

e (rad) 

2vrl o - 

Fig. 2 

0cti ~ k  

o i ~- x ( m )  
0 xoi L 

A typical local damage in a cylindrical shell 

N 
Au = E k~Dk (27) 

k=l 

where 

k~,=f f ¢.(x, O)axaO 
J eak-O~ Jxa~--~k 

(28) 

Solving Eq. (15) for q, and substituting the res- 
ults into Eq. (11) may yield the forced vibra- 
tion responses of damaged cylindrical shell in the 
form : 

{u(x, 0, t)}=(~{ Uz} 
Wl(x~, 0~) 

= Q~-cd 

+ ~ ]~kj{ U,] W1(xr, &) )Foe,,Ot 
, = ~ J = ~  (Q~-co~) (f~-~o ~ ) 

={U(x, 0) V(x, O) W(x, O)}rFoe ~t 
(29) 

The effects of  structural damping can be readily 
taken into account in Eq. (29), by simply re- 
placing the natural frequencies Q t with f21 (1 + 
it/l) 1/2, where r/z is the modal loss factor. 

3. D a m a g e  Ident i f i ca t ion  M e t h o d  

It is in general easier to measure the radial 
displacement w(x ,  0, t) rather than to measure 
the longitudinal displacement u (x ,  0, t) or cir- 
cumferential displacement v(x ,  0, t).  Thus, the 
inertance FRF of w(x, O, t) measured from 
a damaged cylindrical shell will be considered 
as the experimentally measured data required to 
identify the damages within a cylindrical shell. 

The inertance FRF  of the radial displacement 
w(x, O, t) is defined as the ratio of  the acc- 
eleration measured at a point (x, 0) to the force 
applied at (XF, OF) as 

A ( ~ o ' x ,  0 ) -  iO(x, O, t) 
pz(x~, 0~, t) 

= - w 2 W ( x ,  O) 
(30) 

where /O(x, 0, t) and Pz(x, O, t) denote the 
measured acceleration and the point force appli- 
ed normal to the shell surface, respectively. Ap- 
plying pz(x,  0, t) from Eq. (10) and w(x, O, t) 
from Eqs. (29) into Eq. (30) yields 
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J ~'~ ~' W, (x, O) W,, (XF, &) ) 
k=l~*=lj=l Q } - w  2 Q~_w 2 ,Dh 

a~ W,(x, 0) W,(x~, 0~) 
=A(c0 ' x, 0) +w2E ~=~ Qz~- 0j2 

(31) 

Equation (31) certainly provides the relation- 

ship between unknown damage information (/.e., 
damage locations k and magnitudes D~) and 

known vibration data such as the inertance F R F  
A ( w  ; x, 0),  natural modes W1, and natural fre- 

quencies f2,, it can be used to develop an algo- 

rithm for structural damage identification. In 
Eq. (31), the mode shapes and natural frequen- 

cies in the intact state are considered as the 

known quantities because they will be provided 

in advance by modal testing or analytical vibra- 

tion analysis. The inertance F R F  A ( w  ; x, O) is 

also considered as the known quantity because 

it will be measured directly from the damaged 

cylindrical shell. However, the damage magni- 
tudes Dh (k =1,  2, "", N) are unknowns to be 

identified. 
In Eq. (31), the FRF-measurement point (x, 

0) and excitation frequency w can be chosen 

arbitrary. For a chosen set of (x, 0) and ag, Eq. 
(31) may yield a linear algebraic equation for 

unknown Dh (k = 1, 2, " ' ,  N) .  Thus, by choosing 

N sets of excitation frequency and FRF-mea-  

surement point, total N linear algebraic equa- 

tions can be derived from Eq. (31) in the form 

where 

[ X ] { D } = {  Y} (32) 

{D}={Dx/92 Da ." DN} r (33) 

{ Y}={  Yx Y~ Ya "" YN} r (34) 

IX3 = IX,,] (35) 

with 

3M3,~ W,(xp, &) Wj(x~, &) 
- a ) q E E k J i  2 z 2 2 Xh,= 2 , (36) 

1=1I=1 ~ I - -  (1.)q Q l - -  (.Oq 

Oat+Or xat+.~t 
kb=f01,-e, fx£,-x, ~ . ( x ,  O) dxdO (38) 

k = p + ( q - l ) P a n d  l = 1 ,  2, --', N 
(39) 

( p = l ,  2, "--, P a n d  q = l ,  2, ..., Q) 

In the above equations, (xp, 0p) and COq de- 
note chosen FRF-measurement points and ex- 

citation frequencies, respectively. Once the matrix 

IX]  and vector { Y} are computed by using 
the known vibration data (i.e., inertance F R F  A 

(co ; x, 0), natural modes IV/, and natural fre- 

quencies Qz), Eq. (32) can be solved for {D}. 
Because the subscript k for Dh indicates the 

location of the k- th  finite segment, the value of 

Dh itself indicates the damage magnitude uni- 

form over the k- th  finite segment. Thus, solving 

Eq. (32) for { D } may imply the identification of 

all local damages at a time. 

By virtue of using FRF-da ta ,  one may choose 

as many sets of excitation frequency and F R F -  

measurement point as needed to obtain a square 

matrix I X ] .  For  example, for a cylindrical shell 

divided into N finite segments with unknown 

damage magnitudes Oh ( k = l ,  2, .",  N) ,  one 

may determine the number of FRF-measurement 

points P and the number of excitation frequen- 

cies Q to satisfy the relation PQ=N. This can 

make the inverse problem represented by the N 

by N matrix IX]  well-posed, and a direct in- 

verse method can be applied to Eq. (32), instead 

of using a complicated optimization solution 

technique. This will be one of advantages of the 

present SDIM. 

In summary, Eq. (32) represents the structural 

damage identification algorithm which is appli- 
cable to cylindrical shells, and it requires : (1) the 

natural frequencies measured in the intact state 

(i.e., ~z), (2) the natural modes measured in 

the intact state (i.e., Wi), and (3) the F R F - d a t a  

measured in the damaged state, i.e., A (co ; x,  0) .  

4. N u m e r i c a l  

I l lustrat ions  and D i s c u s s i o n s  

Yh=A(coq ; xp, &) 
3M + ~o~E W, (xp, Op) W, (x~, 0~) (37) 

To investigate the effects of damage on the 

natural frequencies and also to test the feasibi- 
lity of the present SDIM, a cylindrical shell sim- 
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ply supported at both end edges is considered. 

The cylindrical shell has the radius R=0.125 m, 

length L=0 .3  rn, thickness h=0.003 m, Young's 

Modulus E = 2 0 6  GPa, and the mass density p = 

7850 k g / m  3. As shown in Fig. 3, two cases are 

considered: the first case is when the shell has 

one local damage D=0.3  (Fig. 3(a)),  and the 

second case is when the shell has three local 

damages D1=0.3, Dz=0.4 and /93=0.2 (Fig. 3 

0(rad) 

• " ~.~ i~"~'-i'i'i 

(a) One damage 

O(rad) 

(b) Three damages 

Fig. 3 A simply supported cylindrical shell with one 
damage (a) and three damages (b) 

(b)). To compute the inertance FRF required 

for structural damage identification, the cylin- 

drical shell is excited by applying a harmonic 

point force at the point (x~-~O.15 m, 0~=n') ,  

which is indicated by the cross (X) in Fig. 3. 

4.1 Effect of damage on the natural fre- 
quencies 

Figure 4 compares the natural frequencies of 

the intact shell with those of the damaged shells 

with one and three damages, with varying the 

circumferential mode number n for longitudinal 

mode numbers m =1, 2, 3, and 4. A sufficient 

number of normal modes (i.e., m X n =  10 X 11 

modes) are used to compute the natural frequen- 

cies. All natural frequencies are found to slightly 

decrease in magnitude due to the presence of 

local damages. As shown for the intact shell 

in the book by Soedel (1993), Fig. 4 certainly 

shews that the natural frequencies of damaged 

5 0 0 ~  
0 i 2 3 4 5 6 7 8 9 10 

n 

70OO 

85OO 

!- 
4OOO 

35OO 

3000 

I - "  lhme damages 

I 2 3 4 5 6 7 8 9 10 
n 

- -  no damage 
m = 2  

4000 

25oo 

0 I 2 3 4 S 6 7 8 9 10 
n 

7OOO 

5500 

5OOO 

45~0 

4OOO 
0 I 2 3 4 5 6 7 8 9 10 

n 

Fig. 4 The effect of damage on the natural frequencies 
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shell gradually decrease in magnitude to reach 

the minimum values as the circumferential mode 

number n is increased, for fixed longitudinal 

mode number m, and then continuously increase 

as the circumferential mode number n is kept 

increasing. 

4.2 Numerical  damage identification tests  
The present SDIM requires the inertance FRF 

in the damaged state and the modal data (i.e., 
natural modes and natural frequencies) in the 

intact state. For the present numerical damage 

identification tests, the required modal data are 

analytically obtained from the eigenvalue prob- 

lem of Eq. (12) by assuming that Eq. (12) re- 

presents the refined cylindrical shell model in 

the intact state. By the word 'refined', we mean 

that the experimentally measured and analytically 

predicted modal parameters are in good agree- 

ment. 

Because the inertance FRF data is experi- 

mentally measured directly from the damaged 

shell, it is apt to be contaminated by the mea- 

surement noises. Thus, following the approach 

used by Thyagarajan et a1.(1998), an e% ran- 

dom noise is added to the inertance F R F  an- 

alytically obtained from Eq. (30) to take into 

account any possible noises in the experimentally 

measured inertance FRF. That is 

= A ( w q  " x~, 0~)( 1-F l ~ × r a n d n  ) (40) 

where _/~ is the inertance FRF contaminated by 

) .30 

0 0 " " 

(a) 2×2 elements 

,..,, o . % I  . ..-,,- . . - -  , . . .  . . . .  - . . .  
/ 

411 

/ 

alp . -  ~ • . f : o 3  . . . .  " 18 iiWilb " -. - . . ,  

: ,ql |mm  
'~i ~ x(m) 

(c) 8 X 8 elements 

Fig. 5 

a O -  

~o 
Jo 
Q 

I o  

F ° 

0 0 

(b) 4×4 elements 

0 0 

(d) 10× 10 elements 

Damage dentification results vs. the number of finite segments used in analysis 
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e%o random noises, and randn is the random 

noise generator function in MATLAB ®. It is 

assumed that the random noise is uniformly di- 

stributed, with its mean value is zero and the 

variance is equal to one. In the previous study 

(Cho et al., 2002), the numerical feasibility test 

based on Eq. (40) was proved to be quite rea- 

sonable approach through the experiments for 

damaged beam-type structures. 

Figure 5 compares the damage identification 

results for the one damage problem obtained by 

using different number of finite shell segments, 

considering 3,%o random noises in FRF-da t a .  

Figure 5 clearly shows that the accuracy of dam- 

age identification is improved as the total num- 

ber of  finite shell segments is increased. Using 

about 10× 10 elements is found to give almost 

converged, accurate results. 

Figure 6 compares the damage identification 

results for the three damages problem obtained by 

considering different levels of  random noise. As 

expected, the accuracy of damage identification 

results is shown to be degraded as the level of 

random noise is increased. However, Fig. 6 shows 

that the present SDIM provides very satisfactory 

damage identification results up to quite high 

level of  random noise, say 7%. 

5. Conclusions 

In this paper, an F R F - b a s e d  SDIM is pro- 

posed for cylindrical shell structures and the 

. . ? .  . - 7 ' .  

g 

.! 
J 

Fig. 6 

0.30 ).30 

0 0 0 0 

(a) 0% random noise (b) 3% random noise 

a 

e 

m 

g 
o 

D.30 

0 0 0 0 

(c) 5% random noise (d) 7% random noise 

Damage identification results for the three damages problem obtained by varying the level of random 
noises in FRF-data  
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numerically simulated damage identification tests 

are conducted to evaluate the performance of 

the present SDIM. The structural damage identi- 
fication algorithm is derived from the frequency 

response tunction solved from the dynamic equa- 
tions of motion of the damaged shell, in which 

local damages are characterized by using a dam- 

age distribution function. 

The appealing features of the present SDIM 

are as follows. 

(1) The FRF-data ,  instead of modal data, is 

required for the damaged state. 
(2) To form a well-posed damage identific- 

ation problem, a sufficient number of linear alge- 

braic equations can be readily obtained by simply 

varying the combination of excitation frequency 

and FRF-measurement point. 

(3) Many local damages can be located and 

quantified simultaneously. 

For the successful application of the proposed 

SDIM, the errors in both the modal data (mea- 

sured from the intact structure) and the F R F -  

data (measured from damaged structure) must be 

small enough, especially for successful identific- 

ation of small and weak local damages. 
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